Search results for "shock tube"
showing 9 items of 9 documents
Outgassing: Influence on speed of magma fragmentation
2013
[1] Predicting explosive eruptions remains an outstanding challenge. Knowledge of the controlling parameters and their relative importance is crucial to deepen our understanding of conduit flow dynamics and accurately model the processes involved. This experimental study sheds light on one important parameter—outgassing—and evaluates its influence on magma fragmentation behavior. We perform fragmentation experiments based on the shock tube theory at room temperature on natural pyroclastic material with a connected porosity ranging from 15% to 78%. For each sample series, we determine the initial pressure (P) required to initiate magma fragmentation (fragmentation threshold, Pth). Furthermor…
An experimental and kinetic modeling study on the oxidation of 1,3-dioxolane
2021
International audience; The modern catalytic or enzymatic advances allow the production of novel biofuel. Among them, 1,3dioxolane can be produced from formaldehyde and ethylene glycol, both can be obtained from biomass. In this study, the oxidation of 1,3-dioxolane is studied at stoichiometric conditions. The ignition delay times of 1,3-dioxolane/O 2 /inert mixtures were measured in a shock tube and in a rapid compression machine at pressures of 20 to 40 bar and temperatures ranging from 630 to 1300 K. The pressure profiles recorded in the rapid compression machine show a first stage of ignition enlightening the influence of the low temperature chemistry of combustion. Furthermore, mole fr…
An experimental and modeling study of the oxidation of 3-pentanol at high pressure
2019
International audience; High pressure oxidation of 3-pentanol is investigated in a jet-stirred reactor and in a shock tube. Experiments in the reactor were carried out at 10 atm, between 730 and 1180 K, for equivalence ratios of 0.35, 0.5, 1, 2, 4 and 1000 ppm fuel, at a constant residence time of 0.7 s. Reactant, product and intermediate species mole fractions were recorded using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC). Ignition delay times were measured for 3-pentanol/O2 mixtures in argon in a shock tube at 20 and 40 bar, in a temperature range of 1000–1470 K and for equivalence ratios of 0.5, 1 and 2. The fuel did not show any low-temperature reactivity…
Methyl-3-Hexenoate Combustion Chemistry: Experimental Study and Numerical Kinetic Simulation
2020
International audience; This work represents a detailed investigation of combustion and oxidation of methyl-3-hexenoate (CAS Number 2396-78-3), including experimental studies of combustion and oxidation characteristics, quantum chemistry calculations and kinetic model refinement. Following experiments have been carried out: Speciation measurements during oxidation in a jet-stirred reactor at 1 atm; chemical speciation measurements in a stoichiometric premixed flame at 1 atm using molecular-beam mass-spectrometry; ignition delay times measurements in a shock tube at 20 and 40 bar; and laminar burning velocity measurements at 1 atm using a heat-flux burner over a range of equivalence ratios. …
Oxidation of pentan-2-ol -Part II: Experimental and modeling study
2021
International audience; The oxidation of pentan-2-ol was investigated at high-pressure in a jet-stirred reactor and in a shock tube. Experiments in the JSR were carried out at 10 atm, between 500-1180 K, for five different equivalence ratios of = 0.35, 0.5, 1, 2, 4 and 1000 ppm of fuel, at a constant residence time of 0.7 s. Reactant, product and intermediate species mole fractions were quantified using Fourier transform infrared spectrometry (FTIR) and gas chromatography (GC). Ignition delay times were measured for pentan-2-ol/O 2 mixtures in argon in a shock tube at 20 and 40 bar, in a temperature range of 1070-1460 K and for equivalence ratios of = 0.5, 1 and 2. Ignition delay times of a…
Stark effect in some lines of neutral bromine
2002
Abstract This work presents experimental results of profile parameters for prominent lines of neutral bromine, for which serious discrepancies between experimental values of different authors as well as between experimental and calculated values were observed. The observed discrepancies between shock tube and earlier arc experiments are very large. Our results of profile parameters, obtained also in a wall-stabilized arc, show acceptable agreement with the earlier arc measurements. It is obvious, that the shock tube experimental result is out of the range of acceptable inaccuracy and should be remeasured. The theoretical calculations based on different assumptions give also strongly diverge…
A multidimensional hydrodynamic code for structure evolution in cosmology
1996
A cosmological multidimensional hydrodynamic code is described and tested. This code is based on modern high-resolution shock-capturing techniques. It can make use of a linear or a parabolic cell reconstruction as well as an approximate Riemann solver. The code has been specifically designed for cosmological applications. Two tests including shocks have been considered: the first one is a standard shock tube and the second test involves a spherically symmetric shock. Various additional cosmological tests are also presented. In this way, the performance of the code is proved. The usefulness of the code is discussed; in particular, this powerful tool is expected to be useful in order to study…
High-order regularization in lattice-Boltzmann equations
2017
A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order nonequilibrium moments are filtered, i.e., only the corresponding advective parts are retained afte…
An experimental and modelling study of the oxidation of 3-pentanol at high pressure
2018
International audience; High pressure oxidation of 3-pentanol is investigated in a jet-stirred reactor and in a shock tube. Experiments in the reactor were carried out at 10 atm, between 730 and 1180 K, for equivalence ratios of 0.35, 0.5, 1, 2, 4 and 1000 ppm fuel, at a constant residence time of 0.7 s. Reactant, product and intermediate species mole fractions were recorded using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC). Ignition delay times were measured for 3-pentanol/O2 mixtures in argon in a shock tube at 20 and 40 bar, in a temperature range of 1000–1470 K and for equivalence ratios of 0.5, 1 and 2. The fuel did not show any low-temperature reactivity…